Web-Technologies
* Chapters

= Client-Side Programming

= Server-Side Programming

= \Web-Content-Management
= Web-Services

= Apache Webserver

= Robots, Spiders and Search engines
= Robots and Spiders
» Search engines in general
= Google

Wolfgang Wiese, RRZE Web-Technologies | 1

Client-Side Programming 1

= HTML
= HTML = HyperText Markup
Language

* Developed since 1989 as platform
iIndependent markup language

" International standardized by the W3C
(http://www.w3.0rg)

= | ast release: Version 4.0
= New extended version: XHTML 2.0

= Often extended with non-standardized
tags by developer of browser and web-
authoring-programs

Wolfgang Wiese, RRZE Web-Technologies| 2

Client-Side Programming 2

= Example base structure of a HTML-
document

<HTML>
<HEAD>
<TITLE>My HTML-Document</TITLE>
</HEAD>
<BODY>
<P>Hallo World!</p>

</BODY>

</HTML>

Wolfgang Wiese, RRZE Web-Technologies| 3

Client-Side Programming 3

= XML

= Extensible Markup Language

= With help of XML its possible to define content and
the structured layout of a page in several parts =>
automatic analysis is possible.
In other words:

= XML is a set of rules for designing text formats, in
a way that produces files that are easy to
generate and read (by a computer), that are
unambiguous, and that avoid common pitfalls,
such as lack of extensibility, lack of support for
internationalization, and platform-dependency.”

Wolfgang Wiese, RRZE Web-Technologies| 4

Client-Side Programming 4
= Simple example of XML Usage:

<?7xml version=,,1.0“ 7>
<IDOCTYPE greeting [
<I[ELEMENT greeting (#PCDATA)>
<IELEMENT content (#PCDATA)>
>
<greeting>Hallo XML! </greeting>
<content>
Here, we write a nice text that says nothing, but is out content..
</content>

See also:

http://www.w3.org/XML/
http://www.w3.0org/TR/2000/REC-xmI-20001006

Wolfgang Wiese, RRZE Web-Technologies |

Client-Side Programming 5

= JavaScript
= JavaScript is a cross-platform, object-oriented
scripting language.
= Used mostly within HTML-pages.

= JavaScript contains a core set of objects, such as
Array, Date, and Math, and a core set of language
elements such as operators, control structures,
and statements.

= Created originally by Netscape and Sun
Microsystems. (Within MSIE ,extended” by the
JScript-Library).

= Allows also usage for server-side programming

Wolfgang Wiese, RRZE Web-Technologies| 6

Client-Side Programming 6

= Sample JavaScript

<html>
<head>
<title>Beispiel</title>
<script language="JavaScript"> <!--
function Quadrat(Zahl) {
Ergebnis = Zahl * Zahl;
alert("Das Quadrat von " + Zahl + " =" + Ergebnis);
b
//--> </script>
</head>
<body><form>
<input type=button value="Quadrat von 6 errechnen" onClick="Quadrat(6)">
</form></body></html>

Wolfgang Wiese, RRZE Web-Technologies |

Client-Side Programming 7

= Sample JavaScript (cont.)

dl [Untitled - Netscape 6] = 10] x|
i . File Edit Yew Search Go Bookmarks Tasks Help
Lo OB (OF sl
- |
:_l Duadrat won & emechnen I
I
E § & Dias Quadrat von & = 36
1. v | ok] -
R EAE - =

Wolfgang Wiese, RRZE

Web-Technologies |

8

Client-Side Programming 8

= JavaScript (cont.)

= JavaScript is mostly used as enhancement
for webdesign; Due to its possibility to
access and chance objects (like HTML-
Tags), it allows effects fo improve the
usability of websites.
= Often used: onMouseOver, onClick

» Professional effects in combination with CSS
(but CSS also replaces some JS-functions)

Wolfgang Wiese, RRZE Web-Technologies| 9

Client-Side Programming 9

= Cascading Style Sheets (CSS)

= HTML specification lists guidlines on how
browsers should display HTML-Tags.
Example:

<style type=,,text/css*>
h1,h2,h3,h4 {
color: navy;
font-family: Garamond, Helvetica, serif;

)
hl.dark {

color: black;

b

</style>

Wolfgang Wiese, RRZE Web-Technologies| 10

Client-Side Programming 10

= Cascading Style Sheets (cont.)
= CSSis, like HTML, standardized by the W3C
http://www.w3.0org/Style/CSS

= |n combination with new HTML-Versions, it will
replace old HTML-tags, like , <hr>,
, ...

= CSS requires browsers that supports this format
(IE /NS >=V4.0). Older browsers will ignore all
settings made by CSS.

= CSS definitions can be placed within a file;
Therefore it's possible to chance the layout of all
WebPages by changing one single CSS-file.

Wolfgang Wiese, RRZE Web-Technologies | 11

Client-Side Programming 11

= Other client-side techniques
= Flash

* Browser-Plugin by Macromedia
(http://www.macromedia.com)

= Allows interactive vector-graphics and animations
= Mostly used for special effects, small movieclips and
3D-graphics
= RSS-Feeds

* RSS = Really Simple Syndication (Web content
syndication format.)

= XML-File for special news. Often also used for Blogs
(Web-Logs)
= Technical infos: http://backend.userland.com/rss
= Experimental or old techniques:

= cURL, VRML (Virt%J|fJ§§®|iEX Mﬁde”ng Lanw&;-afgcﬁr)ologiesl 12

Server-Side Programming 1

= |ntroduction

= Server-Side Programming:

= UserAgent (Browser) requests a dynamic document by
asking for a file

= Optional extra information is sent to the server using
GET or POST

= Server parses the user-request and creates the
document by internal procedures

* On success, the document is sent back to the user
= Several methods for servers to create a dynamic
document:
= CGlI
= SSI
= PHP

u
ASP and others Wolfgang Wiese, RRZE Web-Technologies | 13

Server-Side Programming 2

= Recall: Accessing a static page

@ URL ((\Q URL»=7 Filenam

S E——)
Data C‘“w) < Data

Client Network Webserver Filesystem

Typical access: URL = Protocol + Domain name or
IP (+ Port) + Filename within the Document Root

Examples:
http://www.uni-erlangen.de/index.html
http://www.uni-erlangen.de:181/index.html
https.//131.188.3.67/internal/documents/

Wolfgang Wiese, RRZE Web-Technologies | 14

Server-Side Programming 3

= Accessing a static page (cont.)

= Document Root: ,Starting point® (path) within the
filesystem

= Data of a webpage consists of:
* Header-Informations

. .
Example: Content-type: text/html

Server: Apache/1.3.27
Title: Portal

Status: 200

Content length: 6675

= Body (Plain Text, HTML, XML, ...)

Wolfgang Wiese, RRZE Web-Technologies| 15

Server-Side Programming 4

= CGIl (Common Gateway Interface)

___ Processpath +

URL ENVironment
i) > &
< <
Data Data*
Client Webserver

= Header-Info: Part of the header-information the
webserver sends. At least ,,Content-type”

= Qutput-Data: Output as defined within Content-
Type.

= Data* = Header-Info + Output-Data
Wolfgang Wiese, RRZE Web-Technologies| 16

Server-Side Programming 5
= CGlI (cont.)

= Process will be loaded and executed anew at every
access

= GET-Request:

= Data will be transmitted as addition to the URL

= Example:
http://www.uni-erlangen.de/cgi-bin/webenv.pl?data=value

= Server will transform this into the standard environment
set of the server: $ENV{'QUERY _STRING?}
» Example: QUERY _STRING = “data=value”
= Optional use: Sending data on $ENV{'PATH_INFO’} by

using pathes:
= http://www.uni-erlangen.de/cgi-bin/webenv.pl/pathinfo?data=value

Wolfgang Wiese, RRZE Web-Technologies | 17

Server-Side Programming 6

= CGlI (cont.)
= POST-Request:

= Data will be transmitted to the script on <STDIN>
* Information wont get saved within the URL

» |Length of transmitted data: $ENV
{{CONTENT _LENGTH?}

Wolfgang Wiese, RRZE Web-Technologies | 18

Server-Side Programming 7

= CGIl with User-Environment

= Reason: Security problems at webservers running
as special user (e.g. root !)

= Several modules to solve this: CGIWrap,
SUEXEC, sBox

= Base idea: Script is executed by a user without
admin-rights

Wolfgang Wiese, RRZE Web-Technologies| 19

Server-Side Programming 8

= CGIl with User-Environment (cont.)

= CGIWrap: User CGI Access
(http://cgiwrap.unixtools.org)
= Allowing the execution of cgi-scripts from local user-

homes with http://www.DOMAIN.TLD/~login/cgi-
bin/skript.cqgi

= /~login/cgi-bin/ forces a redirect to a wrapper-script, that
executes the skript.cgi as user ,login®.

= sBox:
(Lincoln Stein, http://stein.cshl.org/software/sbox/)

= CGIWrap + Configurable ceilings on script resource
usage
(CPU, disk, memory and process usage, sets priority
and restrictions to ENV)
Wolfgang Wiese, RRZE Web-Technologies | 20

Server-Side Programming 9

= CGI with User-Environment (cont.)

= sueXEC: Apache-module
(http://httpd.apache.org/docs/suexec.html)

Processpath +
Username +

Processpath +
ENV

URL ENV ChangeRoot
—> —> Script:
@ <+— <+— New user =
Data Data* Username
Client Webserver

= Allows the execution of all CGI-Scripts, SSI and PHP-CGI on a
defined user ID

= No special syntax for cgi-directories

= Supports the use for virtual hosts

Wolfgang Wiese, RRZE

Web-Technologies| 21

Server-Side Programmin

= SSI (Server Side Includes)

2

Client

URL

Data

Cont
witho

Webserver
/] Read file
n < >
nt Content with
ut SSI SS

Content . witt

1

SSI

Wolfgang Wiese, RRZE

10

SN
N

File.shtml

~_

Filesystem

Web-Technologies |

22

Server-Side Programming 11
- SSI (cont.)

SSI-Tags are parsed by the server

= SSI-Tags are parsed as long as there are no SSI-Tags
anymore within the document

= Examples:

» <|--#echo var=,DATE LOCAL"-->
will be replaced with the string for the local time of the server

= <|--#include virtual=filename.shtml* -->
will insert the content of filename.shtml. filename.shtml can
use SSI-Tags too!
(Recursive includes of files will be detected.)

» <I--#include virtual=,/cqgi-bin/skript.cgi?values‘-->
can be used to execute scripts

= SSl-files often use the suffix ,.shtml“ as default

= SSI works together with suEXEC, but not with CGIWrap or
sBox

Wolfgang Wiese, RRZE Web-Technologies |

Server-Side Programmin

= SSI+ CGlI (without sUEXEC)

URL
g]
<
Data
Client Cont
witha

Webserver

—

ent
ut SSI

=

Content.witt

Read file

<

Content

SSI

with

12

RN
Filesystem

File.shtml

~_

Processpath +

ENV

—

SSI

Data*

Wolfgang Wiese, RRZE

Web-Technologies |

24

Server-Side Programming 13

= SSI+ CGl (cont.)

= Example SSl-file: index.shtml

<body>
<!--#include virtual=,navigation.shtml“-->
Hallo,

willkommen auf meiner Seite.

</body>

= navigation.shtml

<hr>FAU

Web.de Zeit:
<!--f#config timefmt=,%d.%m.%Y, %H.SM“-->
<!--#echo var=,DATE LOCAL“--><hr>

= German samples: http://cgi.xwolf.de/ssi

Wolfgang Wiese, RRZE Web-Technologies | 25

Server-Side Programming 14

= SSI+ CGl (cont.)

= Content send to the UserAgent by the web
server:

<body>

<hr>FAU
Web.de Zeit:
26.06.2003, 13.17<hr>

Hallo,

willkommen auf meiner Seite.
</body>

Wolfgang Wiese, RRZE Web-Technologies| 26

Server-Side Programming 15

= Embedded Scripts

= Recall: Normal CGl-processes will be
loaded and executed anew at every request.

= Embedded scripts keep already loaded
scripts in memory.

= Script-Interpreter is (compiled) part of the
webserver or implemented as module (like
in Apache later Version 1.3.12)

= Popular in use with PHP

= Also in use for Perl-CGl-scripts and
Databases

Wolfgang Wiese, RRZE Web-Technologies | 27

Server-Side Programming 16

= Embedded Scripts (cont.)

= First access by client1:

Webserver

URL - [
& =) enve Filesystom)
Data Data* A ¥ Skriptpath N

Client1 (Module)

Scriptmanagement and
-Interpreter

Read File Script J

I\./

Data* 4% yENV N

Script

Interpreted

v

Wolfgang Wiese, RRZE Web-Technologies| 28

Server-Side Programming

= Embedded Scripts (cont.)

= | ater access for clientX

Webserver

ClientX

Data* A ¥ Skriptpath

(Module)

Scriptmanagement and
-Interpreter

ENV +

I\./

Data” f VEP“"

Script

Interpreted

v

Wolfgang Wiese, RRZE

17

Web-Technologies |

29

Web-Content-NManagement

= Basic Principle:

= Partitioning Content and Layout

<Titel>

Martin Muster
</Titel>
<Bild>
mustermann.gif
</Bild>

<Text>
Bla..Bla..
</Text>

Content

#Titel#

#Bild#
#Text#

Layout

Wolfgang Wiese, RRZE

1

Martin Muster

Bla.. ?

Bla...

Webpage

Web-Technologies |

Web-Content-Management 2

= Content-Management is needed for:

Huge amount of information, gathered and created by many
people

Information with references to many other information, that
might refer back: complex link-trees

Information with a limited lifetime: Content-lifecycle

= Web-Content-Management

Information = Content is presented within a given layout to
the public by using the world wide web.

Clients are requesting all information from a webserver

All techniques a webserver offers may be used by a web-
content-management

Wolfgang Wiese, RRZE Web-Technologies| 31

Web-Content-Management 3

= Web-Content-Management-Systems (WCMS) are
using several techniques of server-side programming:

CGl
SSI
Embedded Scripts

= Basic aspects of WCMS are

Management of content and layout
Interaction with databases and/or special file formats

Concepts for data management in respect of Web-
Requests

User-Management
W orkflow for content-lifecycle

Wolfgang Wiese, RRZE Web-Technologies| 32

2=

Web-Content-NManagement

= Content lifecycle

Author
creates/edits

Content
\vgd content

Chief

Editor
controls
conten

Content gets
archived

Some time \

later...

Publishing:
Contents
becomes

Wolfgang Wiese, RRZE Web-Technologies | 33

Web-Content-NManagement

= Publishing-/Staging-Server

= Basic principle for client requests

URL
- —

47
Data

Client

Read File

~Eilesvstern
(Llesystem

@

Webserver
(Staging)

~_

AEilocyetomy
Layouts
Read
FV (HTML)
N~
HTML- n
Files
(Database)
Read\ ———
Data Conte}nt
wCcMs ~—
(Publishing)
Web-Technologies | 34

Wolfgang Wiese, RRZE

Web-Content-Management 6

= Publishing-/Staging-Server (cont.)

= Editors view

(Client using a Webserver)

A lacyatans
Edit Layouts
File | (HITML)
URL + Auth n_ ENV + Auth =7 ~—
>
< <
@ Datahase
Client Data Data® Rea:\\< (Database)
(Editor) Store
Webserver Data | CPNtENt
WEMS e
Wolfgang Wiese, RRZE Web-Technologies |

35

Web-Content-Management 7

= Publishing-/Staging-Server (cont.)
= On editor command or time interval, WCMS will dump new
HTML-files on Webserver's filesystem

= The use of WCMS with this principle is (mostly)
transparent to users which are requesting web pages

* Files are secure against modifications on the webserver:
Dump of the WCMS will overwrite it

= Good performance due to static HTML-files on webserver
= Supports backup (database of WCMS)

= Consistency-problems during file-dumping. Bad for pages
with many changes in short time

= Static pages are registered by internet search engines

Wolfgang Wiese, RRZE Web-Technologies| 36

Web-Content-Management 8

* Dynamic Publishing

Filesystem

Read Layouts

File #| (HITML)
JRL ' ~
>
Data
Re

Datahase
;\%

Client
Data Conte}wt

Webserver ~—10 —
(Dynamic Publishing)

 p—

Wolfgang Wiese, RRZE Web-Technologies | 37

Web-Content-Management 9

= Dynamic Publishing (cont.)

= All data is created on-the-fly: No Static pages
anymore!

= Changes in content or layout are published as soon
as they are accepted

= | ocal Search engines (database search) can be
used to get new data-output

= Qutput can get personalized for clients and/or
authentificated users

= Needs huge resources for server-hardware (CPU,
disk, memory and process usage)

= Problems with internet search engines: Dynamic
pages will not get listed in search engines (!)

Wolfgang Wiese, RRZE Web-Technologies| 38

Webh-Content-Management 1

= Publishing- /Staging and Extract-Concept

2

CIientV\
Read
(Rea er)Data

URL +

B

Client
(Editor)

Webserver
(Staging)
— ENV + Auth
n < Data®
Publishi
/ Read File
Data Ailacyatary
File
(HTML)

WCMS

—

"B

Extracting

Read
Ei

L ts
(HTML,
/ XZZE’
N ASLT) S

vk&Q/A
Edit

Meta-
data

Filesystem
(Zfesystem)

Database
(2atabase)

pata
y

N~

~_
Wolfgang Wiese, RRZE

Web-Technologies | 39

Web-Content-Management 11

= Publishing- /Staging and Extract-Concept
(cont.)
= Good performance due to static HTML-Files
Supports files with many content-refreshes
Allows import of existing files

Allows parallel use of other WCMS and Webeditors
onto the same files

Problems with change for Layout of many files

= Other concepts
= Combinations of the methods above

= Dynamic publishing with caching: Dumpout of few
HTML-files that are requested often

Wolfgang Wiese, RRZE Web-Technologies| 40

